5 research outputs found

    Elevated central serotonin levels inhibit emotional crying

    Get PDF
    Previous research has suggested a possible role of serotonin in emotional expressions, such as crying. We have found that a transient increase of central serotonin levels by means of oral administration of paroxetine reduces crying in response to emotional movies in healthy female volunteers. This is the first direct evidence of an important role of serotonin in this uniquely human emotional response

    Paroxetine reduces crying in young women watching emotional movies

    Get PDF
    Rationale: Crying is a unique human emotional reaction that has not received much attention from researchers. Little is known about its underlying neurobiological mechanisms, although there is some indirect evidence suggesting the involvement of central serotonin. Objectives: We examined the acute effects of the administration of 20 mg paroxetine on the crying of young, healthy females in response to emotional movies. Methods: We applied a double-blind, crossover randomised design with 25 healthy young females as study participants. On separate days, they received either paroxetine or placebo and were exposed to one of two emotional movies: 'Once Were Warriors' and 'Brian's Song'. Crying was assessed by self-report. In addition, the reactions to emotional International Affective Picture System (IAPS) pictures and mood were measured. Results: Paroxetine had a significant inhibitory effect on crying. During both films, the paroxetine group cried significantly less than the placebo group. In contrast, no effects on mood and only minor effects on the reaction to the IAPS pictures were observed. Conclusions: A single dose of paroxetine inhibits emotional crying significantly. It is not sure what the underlying mechanism is. However, since there was no effect on mood and only minor effects on the response to emotional pictures, we postulate that paroxetine mainly acts on the physiological processes involved in the crying response

    Instabilities in crystal growth by atomic or molecular beams

    Full text link
    The planar front of a growing a crystal is often destroyed by instabilities. In the case of growth from a condensed phase, the most frequent ones are diffusion instabilities, which will be but briefly discussed in simple terms in chapter II. The present review is mainly devoted to instabilities which arise in ballistic growth, especially Molecular Beam Epitaxy (MBE). The reasons of the instabilities can be geometric (shadowing effect), but they are mostly kinetic or thermodynamic. The kinetic instabilities which will be studied in detail in chapters IV and V result from the fact that adatoms diffusing on a surface do not easily cross steps (Ehrlich-Schwoebel or ES effect). When the growth front is a high symmetry surface, the ES effect produces mounds which often coarsen in time according to power laws. When the growth front is a stepped surface, the ES effect initially produces a meandering of the steps, which eventually may also give rise to mounds. Kinetic instabilities can usually be avoided by raising the temperature, but this favours thermodynamic instabilities. Concerning these ones, the attention will be focussed on the instabilities resulting from slightly different lattice constants of the substrate and the adsorbate. They can take the following forms. i) Formation of misfit dislocations (chapter VIII). ii) Formation of isolated epitaxial clusters which, at least in their earliest form, are `coherent' with the substrate, i.e. dislocation-free (chapter X). iii) Wavy deformation of the surface, which is presumably the incipient stage of (ii) (chapter IX). The theories and the experiments are critically reviewed and their comparison is qualitatively satisfactory although some important questions have not yet received a complete answer.Comment: 90 pages in revtex, 45 figures mainly in gif format. Review paper to be published in Physics Reports. Postscript versions for all the figures can be found at http://www.theo-phys.uni-essen.de/tp/u/politi

    Epitaxial Growth of Thin Films in Solid-Solid Interfaces and Thin Films

    Get PDF
    corecore